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Abstract

""'This study investigated the effectiveness of the Least Means Squared (LMS)

algorithm against various types of common jammers. The LMS algorithmwas orig-

inally developed by Widrow et. al. and~as implemented using the Block Oriented

Systems Simulator (BOSS). The LMS algorithm was inserted at the output of a

two element antenna array. The array was configured so as to have one-half wave-

length spacing. A quadrature hybrid signal structure was used. The array was then

tested against a barrage and sweep jammer. The barrage jammer testing consisted

of varying each of the three available jammer parameters; power, frequency and an-

gle of arrival individually. The sweep jammer testing consisted of varying each of

the three available jammer parameters; power, sweep frequency and angle of arrival

individually.

The results of the simulation showed the LMS algorithm in combination with

the quadrature hybrid was very effective against both the barrage and sweep jam-

mers. It provided a 55 dB null in the barrage jammer cases and a 50 dB null in the

sweep jammer case. - ('j(-YM

vii



Interference Cancellation in RF Signals

Using Adaptive Array Techniques

I. Introduction

1.1 Background

The interference of communication signals in the RF spectrum is a continually

growing problem in military communications. The nature of this interference can

be grouped into either intentional (e.g., jamming) or unintentional (e.g., commercial

FM broadcast) interference. A receiving signal array is extremely vulnerable to the

effects of this interference that we will term noise throughout this paper. The noise

greatly reduces the ability of a communication system to reliably receive a desired

signal by degrading the signal from its original waveform. The methods of eliminat-

ing these interfering signals are quite diversified and subject to the constraints of the

system that it would be implemented upon. One such class of interference suppres-

sion techniques is the adaptive antenna, sometimes referred to as an adaptive array

(4:1). An adaptive antenna has a controllable antenna pattern so that less energy

is received in the direction of the interfering signal while simultaneously attempting

to receive the maximum amount of energy from the desired signal. This optimizes

the signal-to-noise ratio at the output of the antenna array. The antenna array is

typically comprised of two or more spatially separated elements whose outputs are

summed after being modified by a processing algorithm. Figure 1 represents the

basic components of an adaptive array (10:1-1).

It is quite useful to separate a weak signal source from a strong interfering

source so long as there is a spatial separation between the signal and interfering

sources. Many of these algorithms produce a useful byproduct in their calculations,

1
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which is the angle-of-arrival (AOA) of each of the received signals. The AOA can be

useful in determining the approximate location of the interfering and desired signal.

Although the algorithms are quite different in their approach they are all hampered

by the same constraint. That is, if there are N elements they will only be able to

process N - 1 interfering signals. One of these algorithms is the Least Mean Square

(LMS) algorithm (12). It has been used quite extensively in the areas of control

systems, interference suppression, and adaptive beamforming. The LMS algorithm

is considered a classic adaptive algorithm and it is often used as a benchmark for

newly developed algorithms of a similar nature. In the past it was not considered for

applications requiring small power consumption and weight, due its computationally

intensive requirements that would require a tremendous amount of processing power

to operate effectively. Hence, there is little data concerning its performance against

realistic jammer threats. With the advent of microminiaturized digital signal pro-

cessors, it is feasible to operate such a system on a high-performance aircraft. V" hile

it is not difficult to fabricate and test these systems in a laboratory environment, it

can be very costly to do so. In the case of an actual flight test on a high-performance

aircraft, costly miniaturization would be required before testing with no guarantee

of a successfully operating system.

1.2 Problem Statement

The performance of the Least Mean Square (LMS) algorithm has not been

characterized against commonly encountered noise sources and, in particular, the

type of .amming that a fighter aircraft might encounter in a hostile environment. If

its performance could be simulated in a generic signal environment and that perfor-

mance benchmarked, then other algorithms could be tested in turn against the same

environment and compared. A method of developing and testing the performance

of these algorithms in ground based simulation is required. One such simulation

environment is the Block Oriented Systems Simulator (BOSS) (3). The Least Mean

3



Square algorithm will be researched and its attributes documented in preparation

for its implementation and performance analysis upon the BOSS. An overview of

how the LMS algorithm works and is implemented will be presented as well as its

performance characterized.

1.3 Summary of Current Knowledge

1.3.1 Block Oriented Systems Simulator The Block Oriented Systems Simu-

lator (BOSS) is a simulation environment developed for communication and signal

processing applications (3). As the name implies, BOSS is a simulation environment

for any application that can be represented by a hierarchical block diagram. Its basic

functions include:

1. Graphical construction tools for system block development.

2. Time domain simulations.

3. Presentation of results in either the time or frequency domain.

4. Documentation of system block diagram design iterations.

5. Documentation of simulation results

After a block diagram is constructed, BOSS will generate the Fortran code necessary

for the simulation. The premise of the BOSS is to allow the user to concentrate

on the system problem definition, the analysis of the simulation results, and the

resulting design modifications while freeing the user from the complexities involved

with writing code for simulations.

1.3.2 LMS Adaptive Algorithm

1.3.2.1 Overview of Algorithm The Least Mean Square (LMS) algo-

rithm was developed by Widrow, et al (12). The basic premise of the algorithm is

to minimize the error between the output of the antenna array and some desired

4



signal. The algorithm is able to operate without specific knowledge of either the

angle-of-arrival of the signal we wish to receive or of the noise field. At the input

to the array, the received signal is comprised of a transmitted waveform corrupted

by an interference source. The input signal is then correlated with a desired signal

model stored in the receiver. It may occur to the reader at this point, that if we have

the desired signal to begin with then it would not be important to attempt to remove

it from the noise. The desired signal model is not an exact replica of the received

signal minus noise. It is some locally generated waveform with properties such that

it is correlated with the received signal and uncorrelated with the interfering signal.

This desired signal may be as simple as the waveform produced by the local oscillator

in the receiver. An error signal is produced by subtracting the output of the array

from the desired signal model. In referring back to Figure 1 it should be noted that

the output of the array is based upon the summed output of each of the individual

weight nodes. These outputs are formed by multiplying each input by the weight

value that the LMS algorithm produces. These weights az.'e created and thereafter

-'dapted based upon the previous value of that weight added to the product of the

error signal, convergence factor and array input as shown below.

Wk+1 = Wk + 2pzekX k  (1)

where,

W is the weight vector

k is the iteration

e is the error signal

/j is the convergence factor

X is the input vector.

The convergence factor determines the stability of the algorithm and how quickly

5



it will adapt to the optimal solution. The updated weight is based only upon the

current error signal, current input signal and previous weight value. This allows for

memory space reductions since only this one value, the previous weight, need be

retained. In this manner the weights automatically update themselves and attempt

to converge to an optimal solution. An optimal solution is one for which no additional

adjustment of the weights provides any signal output improvement. At that point,

the signal power is maximized while minimizing the interfering power. A detailed

mathematical description of the LMS algorithm is contained in Chapter II.

1.3.2.2 Implementation of Algorithm The mathematical basis for the

implementation is given by Widrow (13:99-114). He describes all the mathematical

representations that are required for BOSS to effectively simulate the operation of

the algorithm in conjunction with a realistic signal and processing environment. In

the BOSS system, the algorithm will be represented by a block diagram of all the

required components of an actual communication system and the antenna elements.

The LMS algorithm requires only two multipliers, a gain factor and an integrator per

channel use. These components can be combined to form the basic LMS loop and

placed in any communication system that is similar in nature to the one in Figure

1. The LMS algorithm should require minimal effort to implement on the BOSS.

The one area of debate is the proper choice of the desired signal model. The desired

signal should be chosen so as to have the maximum amount of correlation with the

signal that you intend to receive. Its choice will be one of the more important design

tradeoffs in the LMS system implementation.

1.4 Assumptions

In order to reduce the complexity of the simulation and required computer

time, the four element adaptive array will be treated as a stationary system. That

is to say, it will have no spatial variations in its position over the time period of the

simulation. This is a reasonable assumption considering a high performance aircraft

6



will not be able to change its position, relative to the signal source angle-of-arrival,

during the small time period of the simulation. The array will be implemented such

that the element spacings are always at half-wavelengths no matter what the operat-

ing frequency. This is so that the antenna elements are always optimized regardless

of operating frequency. It will further be assumed that all interference that is encoun-

tered by the system will be modeled by Additive White Gaussian Noise (AWGN)

in nature to ease in the system analysis. The thermal noise, typically encountered

in any electronic device, will be very small in comparison to the interference that is

introduced into the system and thus will be ignored.

1.5 Scope

The adaptive array simulation that will be developed will duplicate the re-

sponse of a two element adaptive array similar to the physical configuration of a

linear array typically encountered in a high performance aircraft. The function of

an AM transmitter will be developed . The function of the two different jammers

will be developed so as to simulate a barrage and sweep jammer. These signal and

jamming sources will be combined to produce a matrix formation of signal versus

jammers for the simulation testing. The power levels of the signal will be varied

while maintaining the same signal power level of the jammer, to produce different

input signal-to-jammer ratios and then determine the output signal-to-jammer ratio

for each case. The input signal-to-jammer ratio will then be plotted vs the output

signal-to-jammer ratio. The convergence times of the algorithm will be determined

for each power level. The data will be used to characterize the LMS algorithm after

BOSS system verification.

1.6 Materials and Equipment

BOSS software is currently available to be used oil the Digital Equipment

Corporation (DEC) VAX workstation. The DEC workstation is located in the Signal

7



Information Laboratory at the Air Force Institute of Technology (AFIT).

1.7 Summary and Conclusions

The LMS algorithm described in this chapter is useful for the purpose of signal

extraction from a noise environment. It can be used to counteract the effects of a

directional interfering source so long as the interfering source and the desired signal

are spatially separated. The LMS algorithm will converge to a maximum signal-

to-noise ratio using an N element antenna array provided there are N - 1 signals

present in the same bandpass of the receiver. The LMS algorithm can operate under

changing signal and noise environment conditions by adaption of the weights that

process the input signal from the antenna elements.

8



II. Theory

This chapter will serve to introduce the reader to basic adaptive filter theory

as well as the properties of the LMS algorithm. The basic structure of an adaptive

array will be presented. In addition, the signal characteristics of both the data signal

and jammers will be discussed.

2.1 Adaptive Filter Theory

An adaptive system is one whose framework is altered or adjusted in response to

contact with the environment it is functioning in. In essence, the adaptive array that

is being described in this thesis may be considered to be a filter that has parameters

that automatically adapt in response to some change in its environment. The basic

adaptive system has the following general characteristics (14:4):

1. It can automatically adapt (self-optimize) in the face of changing (nonstation-

ary) environments.

2. It can be trained to perform specific filtering and decision-making tasks.

3. It does not require extensive design procedures, it is essentially self-designing.

4. It can extrapolate its current training in order to cope with new conditions.

5. It can repair itself, in a limited manner, by adapting around system failures.

6. It is a nonlinear system with time-varying characteristics.

7. It is typically complex and difficult to analyze but offers increased system

performance for signals whose input characteristics are unknown.

The single most important feature of an adaptive filter is its ability to be

time-varying and self-adjusting in its performance. When a designer determines the

structure of a desired filter, it is typically based upon some finite range of input

9
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Figure 2. Basic Adaptive Linear Combiner

conditions that the system may encounter. There are many applications where the

complete range of input conditions is not known and even if known may change in

a time-varying nature. This is where the adaptive filter may prove the most useful.

There are two features that readily distinguish them from any other type of nonlinear

systems. First, the adaptive system is automatically adjustable in response to some

time-average characteristic of the input signal. Second, these adjustments are made

in such a manner so as to optimize a designated performance characteristic of the

system.

The major component of an adaptive filter is the adaptive linear combiner

as shown in Figure 2. In it you see the basic components of the linear combiner.

The Input Signal Vector is the parallel input to the system, the Weight Vector is

the values that are multiplied by the Input Signal Vector, and finally the Output

Signal is the sum of the products of the Weight and Input Signal Vectors. The Input

10



Xk W2

Figure 3. Adaptive Linear Combiner with Desired Signal and Error Signal

Signal Vector, Weight Vector, and Output Signal can be expressed mathematically

as follows:

Xk = [Xok, Xlk,... , Xnk]T (2)

Wk = [Wok, Wk, ... , WnkIT (3)

Yk xWk. (4)

As described previously, each Input Signal is multiplied by its corresponding

Weight and then summed to form the Output Signal. It is the derivation of the

weight value that is of major interest. Weight adjustment is the technique where

the proper weight value is determined. The weight adjustment is determined by the

systems output in comparison to some desired signal. This relationship is displayed

in Figure 3. The resulting error signal is produced as the difference between the

systcm output and thc dcsircd signal.

k= dk - XkjWk (5)

11



The error signal in Eq (5) is then squared to obtain the instantaneous squared error.

= - 2dkXkWk + WkXkX kWk (6)

The Mean Square Error (MSE) is obtained by taking the expected value of Eq (6)

with the assumption that W is statistically stationary.

E[4I = E[dk] - 2E[dkXkTWk + WTE[XkXkTlWk (7)

We may now define P as the cross-correlation matrix and R as the autocorrelation

matrix.
pT = E[dkX k (8)

R - E[XkX k (9)

Substituting Eq (8) and Eq (9) into Eq (7) gives us our performance surface.

k - EF1. = E[dk] - 2PTWk + WTRWk (10)

If we look at Eq (10) as a quadratic function of the weight values, the error surface

may be envisioned as a bowl. If the weights are changed we move to a different

portion of the bowl. The adaptive process can then search the given performance

surface in search of global minima or the bottom of the bowl which would indicate

minimum error. The most common and successful method of performance surface

search is by means of gradient methods. The gradient of the MSE is obtained by

differentiating it with respect to the weight vector.

8
V 6k = - k " -2P + 2RWk (J1)

When we have searched the gradient performance suriace and have located the global

minima then this will correspond to a optimal weight vector sometimes called the

12



Weiner weight vector.

W* = R-lP (12)

If we substitute Eq (12) into Eq (10) and simplify we can then determine the mini-

mum MSE as shown below.

'min = E[d] _ W*Tp (13)

This is a very important result in that it relates the input signal vector to the min-

imum MSE that may be achieved using a adaptive linear combiner. The minimum

MSE can also be expressed as

A = em + VTRVk (14)

where

Vk -Wk -W* (15)

and Eq (11) can be then rewritten as

V _ = 2RVk. (16)

2.2 Least Mean Squared Algorithm

The Least Mean Squared (LMS) Algorithm is a method of searching the gradi-

ent performance surface and the primary one that will be addressed. It is one of the

most popular methods due to its simplicity and computational ease. The develop-

ment of the LMS algorithm begins with the gradient performance surface that was

defined in Eq (11). In practice it is very difficult and computationally intensive to

derive the exact gradient that may then be operated upon. It is therefore expedient

to estimate the gradient using numerical methods of determining derivatives. This

is accomplished using finite-time difference averages. The gradient performance sur-

13



face or MSE may be estimated using this approach on the squared error term. This

gives a gradient estimate for each iteration of the algorithm as

= -2fXk. (17)

This then becomes the method to perform weight adjustment in the following man-

ner:

Wk+1 = Wk- (18)

If Eq (17) is substituted into Eq (18), then the result is

Wk+1 = Wk + 2 y1EkXk, (19)

where 14 is the gain constant that controls the speed and the stability of the adaption

process. The fact that we have used an estimate of the gradient rather than the actual

gradient implies that the iterative method will not produce exact responses to the

system inputs. These responses will in fact produce variations in the weight values

that are similar in nature to noise. This noise would imply that the descent in the

gradient surface would not always follow the line of steepest descent in its search for

the global minima. The noise effect upon the weight values is by no means negligible,

but it does dampen with time as the adaptive process nears its optimal solution. In

observation of Eq (19) it is clear that it can be readily implemented in a digital

system with little complexity or complicated processing.

The determination of the gain constant 1i is a subject of much research and

debate. While a value that allows the system to operate is readily derivable, the

manner of its determination in a real-time manner is not trivial. In order to insure

that the system will converge to an optimal solution, remembering that optimal

implies the minimum MSE that is not necessarily zero, the value of y must fall

14



within the region:
10 <- - - ( 2 0 )

A max

where Amax is the eigenvalue with the largest magnitude in the autocorrelation matrix

R. In order not to compute the eigenvalues of R it may be noted from matrix theory

that the largest eigenvalue cannot be greater than the sum of the main diagonal in

the matrix. We may then impose the slightly less restrictive conditions upon p of:

1 (21)
tr[R]

where tr[R] is the sum of the diagonal elements of R . This is still computationally

difficult to produce. If we look at Eq (9) we can see that sum of the diagonal elements

in R is (L+1) times the expected value of the input value to each filter squared. In

other words, (L+1) times its signal power where L is the number of taps in the

adaptive filter. Eq (21) then becomes

1
(L + 1)(signal power) (22)

This constraint is more readily applied since the input signal power is quite easy to

compute. This gives us a range of values for / that may be used in the adaption

process but it is desirable to determine a better method for its determination within

this range. The excess MSE is defined as the expected value of the difference between

the current MSE and the minimum MSE. The misadjustment of the process is defined

as the ratio of the excess MSE to the minimum MSE. The misadjustment of a process

is sometimes referred to as the "cost of adaption" in that it is a figure of merit for

how closely the process tracks the Weiner solution. The misadjustment of the system

can approximated by:

M ;z 1tr[R] (23)

15



and if we solve Eq (23) for 1i we arrive at:

MM(24)
tr[R]

The same development that was used to derive Eq (22) from Eq (20) can be applied

here also to produce:
M

(L + 1)(signal power)(25)

We now have a working approximation for determining the value of A based upon the

input signal power, the number of taps in the adaptive filter, and th ' misadjustmAnt.

A problem arises ,ahen we have a input signal with varying instaDtaneous power. If

the value of u is too small for the input power the weights will never converge due to

the slow search of the gradient. If too large a value of t is chosen, then the system

will become unstable and nonconvergent. A method is desired that measures the

incoming signal power and accordingly adjusts 1 to meet the criteria of Eq (24).

This can be accomplished by taking the sliding window average of the input signal

squared so that its average is obtained over a finite period of time. This averaging

represents the systems average power over the time of the window and prevents the

system from reacting to large changes in power that may only be input spikes. The

misadjustment is typically set to 10 percent in most applications with satisfactory

performance (13).

This method of determining p given in Eq (24) is quite efficient for producing

the value of 1 that is overdamped (14:50). It will produce appropriate weight values

that will converge to the optimal solution will little or no overshoot. It is possible

to set the system convergence to other dampings if desired. The system will be

stable if the criteria of Eq (21) is observed. This corresponds to 0 < M < 1 for

stability, 0 < M < 0.5 for overdamping, M = 0.5 for critically damping, and

0.5 < M < 1 for underdamping. The performance of the LMS loop is totally

dependent upon the system input. As was shown in Eq (24) the system will have

16



a smaller time constant in response to increased signal power. If the time constai.

is lessened, then the system bandwidth will increase. Hence the system bandwidth

is directly proportional to the input signal power. The higher the signal power, the

larger the feedback gain and the quicker the system responds. It has been noted

that faster adaption leads to a more noisy response (underdamping). It is then

apparent that if best steady state response is the overall goal of the process then the

system must therefore adapt slowly (overdamped). This is readily attained when

the systems input signals are stationary in a statistical sense. This becomes more

difficult when the input signals statistics are of a time-varying nature (13). It then

becomes necessary to compromise between small values of A for fast adaption and

tracking of the changing signal characteristics and larger values of P for control of

the noise in the weight vectors. If we go back to the analogy of the error surface

being a sort of bowl that we wish to find the bottom of, then we may now extend

the analogy to the nonstationary case. In the stationary case the bowl sat in a fixed

position and was systematically searched for its bottom. In the nonstationary case

the bowl is now moving and changing its shape so that its minima is never in the

same position or has the same value. This makes it necessary to have the value of i

vary as the system performance surface changes shape as in Eq (25).

2.3 Adaptive Array Structure

An adaptive array is comprised of a set of sensors whose outputs are combined

in such a manner so as to produce a desired effect. This desired effect is typically a

beam that is looking towards some desired signal while shielded from any undesired

signal such as a jammer. A typical two element adaptive array is shown in Figure

5. As you can see this is very similar to the linear combiner that has already been

discussed. The only major difference is that the input from each antenna element is

split into an in-phase and quadrature signal so that two wcghts are needed for each

input element. The goal of the adaptive array is to be able to distinguish between
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a desired and undesired signal. It may then automatically adapt the antenna beam

in such a manner so as to maximize the desired iignal power while minimizing the

undesired signal power. This may be accomplished using any number of different

control algorithms. Some of the more popular ones are the minimum noise variancc

criteria (2), the minimum mean-square error criteria (9), the maximum likelihood

criteria (7), and the maximum signal-to-noise ratio criteria (1). The LMS algorithm

has gained a rather large popularity in recent years due to its simplicity in compu-

tation and its effectiveness in so many varying applications. The basic underlying

premise in all these algorithms is the a priori knowledge of some facet of the signal

environment. This may be the signal's angle-of-arrival or a close approximation of

the signal itself. Thus if a close approximation were available then the system could

control its own pattern.

2.4 Input Signal Characteristics

2.4.1 Data Signal The input signal can be any standard modulation type

that contains data that is easily analyzed. This is so it may be determined if the

data is corrupted by the interference that it encountered. It is desirable that it be

of a narrowband nature. This is so that experiments may be performed comparing

interference with a similar narrow bandwidth with that of interference with a wide

bandwidth. To satisfy these requirements a psuedorandom sequence modulating

large carrier AM was chosen. The data rate of the sequence was selected to be a

tenth of the carrier frequency.

2.4.2 Jammers The jammer is a major portion of a military forces electronic

warfare systems. The term electronic warfare is defined as (5):

Electronic Warfare is military action involving the use of electromag-
netic energy to determine, exploit, reduce, or prevent hostile use of the
electromagnetic spectrum and action which retains friendly use of the
electromagnetic spectrum.
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(a) Spot Jammer

(b) Barrage Jammer

(c) Sweep Jammer

Figure 6. Frequency Spectrum of Different Jammer Types

There are three major types of jammers: the spot jammer, the barrage jammer,

and the sweep jammer (6:88-91). The spot jammer concentrates all its power in a

single narrow bandwidth so as to overwhelm the target system with much larger

power output. The barrage jammer spreads its power output over a much wider

bandwidth, typically on the order of ten percent of the center frequency. And lastly,

the sweep j ,mmer is again a narrow bandwidth transmission very similar to the

spot jammer, that varies its center frequency or sweeps its power along the target

bandwidth. These jammers frequency spectrum are illustrated in Figure 6.
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The use of the spot jammer is typically constrained to certain high-value tar-

gets in a one-on-one type situation where there is one jammer and one emitter. It

attempts to overwhelm the target emitter and restrict its effectiveness completely.

It can have any number of modulation types but is typically narrow-band FM. The

ideal situation is to have the bandwidth of the spot jammer identical to that of the

target system. The barrage jammer is used to cover a large range of frequencies

so that it may jam many target emitters simultaneously. Its modulation type is

typically bandlimited AM. As stated previously its bandwidth is spread over ten

percent of its center frequency. The sweep jammer is used to concentrate a large

power output over a narrow bandwidth but not restricting its application to a single

target but sweeping over a range of frequencies in order to disrupt operations on a

periodic basis. Its modulation type is typically narrow-band FM.

The concentration of experimentation will be on the barrage and sweep jam-

mers. This will highlight the effectiveness of the LMS algorithm with a wideband

signal, the barrage jammer, and a nonstationary narrowband signal, the sweep jam-

mer.
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III. Implementation

This chapter will discuss how each of the desired functions that we wish to

simulate is implemented. In order to implement a system simulation, a simulation

environment is required. The environment chosen was the Block Oriented Systems

Simulator (BOSS) and a brief overview of it is given. The remainder of the chapter

is devoted to the implementation of the system in BOSS. The construction of the

LMS loop, data signal, jammers, and receiving system is detailed and their BOSS

representations depicted.

3.1 Block Oriented Systems Simulator

The foundation of any simulation of a communication system analysis is the

simulation environment. Computer system analysis falls into two general categories.

The first is the formula-based approach in which the computer evaluates complex

mathematical representations that the engineer inputs. The second is the simulation-

based approach in which the computer is used to simulate actual components and

their interaction with each other. The Block Oriented Systems Simulator (BOSS)

falls into this second category. The BOSS is designed for the engineer who may

have little or no experience in computer operations or simulation generation. This

does not detract from it being a very robust simulation environment suitable for the

most complex simulations of communication systems. It is a complete simulation

environment for the design and analysis of any system that can be modeled with

block diagrams which represent signal processing operations.

The simulation-based approach has four basic steps in BOSS. The first is to

represent the system with block diagrams. The second is to generate samples of the

input signals. The third is to perform the signal processing operations. The fourth is

to store the resulting waveforms for analysis. In the BOSS environment the engineer

inputs the system block diagram using a mouse-driven graphics oriented toolbox of
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standard signal processing modules to assemble the desired system representation.

If the desired process is not present in the toolbox and cannot be constructed by

a combination of the available processes, then the engineer may construct his own

process using FORTRAN code. In practical applications this was not found necessary

to do, as the toolbox is very complete. After the desired system is constructed

and saved, the engineer is relieved of the responsibility of any further generation of

results. The BOSS will take care of the code generation, execution and presenting

the results of the simulation, allowing t.e user to concentrate upon the design and

analysis of the system. Once the system is saved the user can recall it from the BOSS

database and perform the desired simulations upon it. The user first attaches probes

at any connecting point on the system block diagram. These probes serve to tell

BOSS to store the generated waveforms from these points. The user then will input

the parameters of the simulation (e.g. simulation duration, frequency of operation,

sampling time etc.) and directs BOSS to undertake the simulation. BOSS will then

generate the FORTRAN code necessary to represent the system and the simulation

parameters. Once it completes the code generation it will execute the program and

inform the user of its completion. The time to complete a simulation is very difficult

to judge, but is based primarily upon the system complexity, number of probes,

sample time and length of simulation, Upon completion of the simulation the results

are available for analysis in either the time or frequency domain. The user selects a

probe that he wifhes to study from a menu and the method of presentation. These

commands and all others in the BOSS system are selected from a series of pop-up

menus that have all the BOSS functions represented. This has been a very brief and

incomplete overview of the BOSS. For further data the reader should refer to the

Block Oriented Systems Simulator (BOSS) Users Guide (3).
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3.2 LMS Ifodule

The development for the Least Mean Squared (LMS) algorithm was given

previously in Chapter II. The implementation of the LMS algorithm followed that

development exactly. The way that BOSS is structured makes it very straight for-

ward to implement any system that has a mathematical model. The model in this

case is Eq (19)

Wk+1 = Wk + 2IlCkXk (26)

As was previously discussed in the development of LMS it is necessary to also have

some method to adapt the value of y to the changing input signal power. This is

accomplished via the p estimator module shown in Figure 7.

The signal to the left of the figure is the input signal Xk-1 , the input signal

to the right of the figure is the error signal Ek-1, and the output signal at the top

of the figure is -k1-k-1. The power estimator outputs the average instantaneous
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power of the input signal over ten samples. It is then added to a very small constant

value to insure that at any one time chere is never a zero output power. This is

very important in the system because you may have an unstable system at the very

beginning of a signal input. The constant generator allows the experimenter to input

a value of M (the misadjustment) to the system. This is then the current value of st

that the system will then multiply by the error signal. This module is then inserted

into the LMS module that is shown in Figure S.

The signal to the left of the figure is the input signal Xk and the input signal

to the right of the figure is the error signal Ck-1. The output signal on the lower

right of the figure is the current weight value Wk and the output signal at the upper

,ight of the figure is the output signal y.;. It has been already been stated that the

output of the s estimator is the term uk-, k-1. This is then muliplied by the Xk-1

term. The amplifier at the output of the multiplier then produces a gain of two. The

product is then added to the previous value of the weight value Wk.-, to produce the

next weight value according to Eq (19). This is then multiplied by the input signal
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Figure 9. Data Signal Module

and the product is the output signal Yk.

3.3 Data Signal Module

The Data Signal Module is composed of a large carrier AM transmitter with

a random data generator as its input. Its block diagram is shown in Figure 9. The

random data generator produces a logical stream of random data based upon an

input seed number. It was necessary to convert this logical stream to numeric values

by the conversion module shown in the figure. The constant generator outputs a

value of one to be added to the random data giving the desired large carrier AM

effect. It is constructed in such a manner so as to have constant transmitter power

with the only output power fluctuations being ,as a result of the input data's change

in amplitude.
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Figure 10. Barrage Jammer Module

3.4 Barrage Jammer Module

The Barrage Jammer Module consists of a gaussian distribution random data

generator input to a large carrier AM transmitter whose output is bandlimited to

ten percent of the center frequency. It is represented in Figure 10. The gaussian

random data generator has a zero mean and unit variance output distribution and

is also initiated by a seed number. The AM transmitter is the same as in the Data

Signal Module. The output bandpass filter is a third order butterworth with 3 dB

attenuation at the edge frequency. The module is constructed so that the edge

frequency of the bandpass filter is automatically set to produce a bandwidth that is

ten percent of the center frequency.
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Figure 11. Sweep Jammer Module

3.5 Sweep Jammer Module

The implementation of the Sweep Jammer module took a more complex turn

than was desired and there are some slight abnominalies that require noting. As was

described earlier the standard sweep jammer consists of a gaussian noise source input

into a narrowband FM transmitter. The narrowband FM transmitter has as its local

oscillator a swept sinusoid instead of a constant value sinusoid. This allows for the

system to vary its center-frequency according to the swept rate of the oscillator. The

implementation is showvn in Figure 11. The system that was implemented behaves in

the manner of a narrowband FM transmitter once a sufficient number of samples of

the swept sinusoid are produced and sent through the multi-stage delay module. The

multi-stage delay represents the Hulbert transform that is required of a FM system.

Until thib occurs the output signal is of a pure sinusoidal nature only with no noise

contained in it. This did not appear to affect the results and will be discussed further

in Chapter V.
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3.6 Antenna Array Module

The Antenna Array Module is utilized to form the necessary time delays in

order to simulate the incoming signals angle-of-arrival (AOA) and sum them to form

two antenna elements that are spaced a half-wavelength apart. This delay can be

approximated by the equation shown below if the transmitter is in the far field so

that it can be assumed that the incoming AOA for each element is equal.

0 = 7r sinkOD) (27)

This phase delay can then be introduced as a time delay so long as the signalh are

of a finite nature. In other words, the signal must have a beginning point and an

ending point. Once again the time delay is implemented using the multi-stage delay

module. The AOA of the signal (either a data signal or a jammer) can be computed

according to the following equation.

OD = arcsin(2foTN) (28)

where,

f0 is the operating frequency

T, is the sample time

N is the delay (an integer value)

This is then replicated for each of the input signals and summed to form the output

of each element as shown in Figure 12.

3.7 Complete System Module

The Complete System Module is composed of the modules already described

as well as basic modules from the BOSS toolbox. It implements a two element array

with quadrature outputs that, after LMS adaption, are summed to form the system

output as shown in Figure 13. The system was implemented. to receive a data signal
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and two jammers into the two element array. Their individual delay times are then

calculated and impressed upon the signal. Each element output is then broken into

its quadrature output and fed into an individual LMS loop. As was discussed in

the LMS module section it has two inputs and two outputs. The two inputs are

the input signal and the error signal. Its two outputs are the adapted signal and

the weight value. Each of the four adapted signals are then summed to form the

system output. The system output is then inverted and compared to the desired

signal in order to generate the error signal that each of the individual LMS loops

uses. The system output is also sent to a envelope detector to determine the effects

of system adaption on the output and compared to the unprocessed output from the

first element of the array.
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IV. Methodoqy

This chapter will introduce the reader to the experiments that were performed

in order to characterize the performance of the LMS algorithm in a two element

array. The experiments fall under two major headings, wideband and narrowband

jammer experiments. The LMS algorithm and the associated two element array have

been implemented on the Block Oriented Simulator System (BOSS). The parameters

of the simulations will be discussed and a guide to determining appropriate values

to be input will be provided. This discussion will facilitate any further experiments

that the reader may wish to perform.

4.1 Wideband Experiments

The wideband experiments were those that involved the use of the wide band-

width barrage jammer and a single data signal. They were broken into three major

cases. The constant frequency and variable power case, the variable frequency and

constant power case, and the constant frequency, constant power with variable angle-

of-arrival (AOA) case were each performed. The three cases that are presented are

intended to represent the majority of the interaction cases between a barrage jam-

mer and a transmitter. Each case involved the execution of numerous simulations in

order to acquire the necessary data to produce performance charts of the algorithm.

In each case it was necessary to gradually vary some parameter of the simulation in

order to determini the output signal power and the number of iterations required to

converge.

4.1.1 Constant Frequency and Variable Power Case The wideband experi-

ments had two signal inputs, a barrage jammer and a modulated data signal. This

experiment explores the effects of the input signal-to-jammer ratio (SJR) on the fig-

ures of merit (output SJR and iterations to converge). The angle-of arrival (AOA)
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of the jammer was set to 30 deg while the AOA of the data signal was 0 deg. The

frequencies of the data signal transmitter and the barrage jammer center frequency

were set to the same value. This centered the barrage jammers frequency spectrum

over the data signals spectrum. This allowed for the power of barrage jammer to be

applied equally to all the components of the data signal frequency spectrum. The

barrage jammer output power was set by fixing the amplitude of the modulating

sinusoid with its only power variations being in the gaussian random data that is

input into the AM transmitter. Its average power over the duration of the simula-

tion was recorded and used in all calculations concerning this case. The amplitude

of the data signal was then set to a constant value and the simulation was executed.

When the simulation had completed its execution the average input signal power,

average input jammer power, average output signal power, and number of iterations

to converge were recorded. This same data was collected for all the experiments.

The simulation was then set to the same parameters as in the previous run but with

a slightly lower input data signal power. This process was repeated until the input

signal power was lowered to the point that the loop could not converge to an optimal

solution.

4.1.2 Variable Frequency and Constant Power Case The previous experi-

ment was then configured for a fixed input power and varying barrage jammer cen-

ter frequency. The angle-of-arrival (AOA) of the jammer was again set to 30 deg

while the data signal AOA was 0 deg. The power of both the barrage jammer and

the data signal were set to a fixed value. This is done to determine the effects of

the barrage jammers frequency spectrum positioning over the entire spectrum of the

data signal. The offset of the center frequency of the barrage jammer from the data

signal frequency would allow for some spectral components of the data signal to be

received with less jammer power than others. The center frequency of the barrage

jammer was varied from eighty to one hundred and twenty percent of the data signal

transmission frequency.
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4.1.5 Constant Frequency and Power with Variable AOA Case The power of

the input signals were once again set to a constant value as in 4.1.2. The frequencies

of the jammer and the data signal were the same as in 4.1.1. The AOA of the data

signal was once again set to 0 deg while the AOA of the jammer was varied from

0 deg to 90 deg. This serves to show the impact on the performance of the algorithm

when the signals have a spatial separation.

4.2 Narrowband Experiments

The narrowband experiments involved the use of the narrow bandwidth sweep

jammer and a single data signal. They were broken into three major cases. The

constant sweep frequency and variable power case, the variable sweep frequency and

constant power case, and the constant sweep frequency, constant power with variable

angle-of-arrival (AOA) case were performed. The three cases that are presented are

intended to represent the majority of the interaction cases between a sweep jammer

and a transmitter as in the wideband experiments. The compilation of data was

performed in much the same manner as the wideband experiments.

4.2.1 Constant Sweep Frequency and Variable Power Case This experiment

explores the effect of varying the input SJR on the figures of merit (the output

SJR and iterations to converge). The sweep frequency of the jammer can be set

to any desired value. As a rule of thumb, the typical value for normal operation is

ten percent of its center frequency. That center frequency was set to the frequency

of the data signal so that the jammer would constantly pass through the frequency

spectrum of the data signal. The angle-of-arrival (AOA) of the sweep jammer was

set to 30 deg while the data signal AOA was 0 deg. As in the wideband experiments,

the jammer power was fixed while reducing the data signal power until convergence

was not possible.
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4.2.2 Variable Sweep Frequency and Constant Power Case This case inves-

tigates the effects of varying the sweep rate of the jammer on the figures of merit.

The angle-of-arrival (AOA) of the sweep jammer was set to 30 deg while the data

signal AOA was 0 deg. The output power of the jammer and the data signal were

fixed and a low value of sweep rate was input into the simulation (one percent of the

center frequency). The sweep rate was then increased up to twenty percent of the

jammers center frequency and the figures of merit recorded.

4.2.3 Constant Sweep Frequency and Power With Variable AOA Case This

case investigates the effects of changing the angle-of-arrival (AOA) of the sweep

jammer on the figures of merit. The AOA of the data signal was once again set to

0 deg while the AOA of the jammer was varied from 0 deg to 90 deg. The jammer

and data signal power were held to ccnstant values and the sweep rate of the jammer

was once again set to ten percent of the center frequency.

4.3 BOSS Operation

This section will describe in detail the method to determine the proper value of

the various input parameters for the two models. This is done to facilitate verification

of the results that will be presented in the next section. It is also done so that

further experimentation can be performed with a minimal learning curve on the

BOSS model.

4.3.1 Barrage Jammer Model There are fourteen parameters that must be

determined and input before the BOSS will execute a simulation. In this section

the manner that was used to determine these parameters will be discussed. The

parameters will be discussed in order of appearance on the BOSS Set Parameter

window. The first parameter is the Stop Time. This tells BOSS the duration of the

simulation in seconds. The experimenter should use care in selecting the length of

the simulation as it has a direct bearing on the number of samples taken. If the value
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is too large the simulation will consume more disk storage than is necessary. The

next parameter is DT, which is the BOSS terminology for sample time in seconds.

This value is subjective but for proper sampliag with no aliasing it is recommended

that it be set to a tenth of the period of the data signal. The BJ-2 AMP and BJ-1

AMP are the amplitude of the modulating sinusoid for the AM transmitters in the

barrage jammers. The BJ FREQ is the center frequency of the barrage jammer.

This parameter sets the frequency for both of the barrage jammers in hertz. The

AM AMPL sets the amplitude of the modulating sinusoid for the AM transmitters

in the data signal. The DATA RATE sets the bit rate of the random data input

into the AM transmitter. It is suggested that this be set to no more than thirty

percent of the transmission frequency. The OUTPUT LIMIT sets the ceiling of

the soft limiter in the envelope detector. This should be set to one. The FREQ

parameter determines the frequency of operation for the data signal in hertz. The

MISADJUSTMENT parameter is one that was discussed at some length in Chapter

II. It may be set to any value between zero and one, but 0.1 is recommended. The

1/4 X F X DT parameter is one quarter of the product of the FREQ parameter and

the DT parameter. This should be an integer value and it determines the amount

of delay for the quadrature elements of the array. The SIGNAL DELAY parameter

(N) sets the AOA of the data signal according to the relationship

sin(OD) (29)
N=2 FREQ.DT

where,

OD is the AOA of the signal

FREQ is the operating frequency

DT is the sample time
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In the same manner the BJ-1 and BJ-2 DELAY's are determined for each of their

AOA's.

4-.3.2 Sweep Jammer Model The Sweep Jammer Model is set up in a simi-

lar manner to the Barrage Jammer Model and many of the parameters that were

previously discussed remain the bame. In this section the additional or different pa-

rameters will be discussed. The HZ/VOLT JAMMER SWEEP determines the sweep

rate constant of the jammer or the number of hertz deviation per volt input. The

input is a one volt sinusoid whose frequency is determined by the JAMMER SWEEP

RATE parameter. These two parameters control the bandwidth of the sweep jammer

(two times the HZ/VOLT JAMMER SWEEP parameter) and how quickly it sweeps

through that bandwidth (JAMMER SWEEP RATE). The BJ-1 DELAY controls the

AOA of the Sweep Jammer. All other parameters are as described in the previous

section.

37



V. Experimental Results

This chapter will presents the results of the experiments described in Chapter

IV. There were approximately forty simulations run for each experiment, for a total

simulations run of over two hundred and fifty. Each simulation would run approxi-

mately five to ten minutes, for a total of over forty hours CPU execution time. The

results of these simulations will be presented in the same order as described in the

methodology. The exception to this is the angle-of-arrival experiments which will

be presented jointly for both the wide and narrow band experiments. A detailed

explanation and discussion of each jammer's performance will be presented as well

as a comparison of the barrage and sweep jammer performance.

5.1 Wideband Experiments

To summarize the methodology presented in the preceding chapter, the wide-

band experiments are those that involve the use of the barrage jammer and its

associated wide bandwidth. There were three experiments performed with three

parameters: jammer power, jammer frequency and jammer AOA. The experiments

were performed in such a manner as to hold two of the three variables constant while

varying the other. This would allow conclusions to be drawn as to the effect of each

parameter's variation on system performance.

5.1.1 Constant Frequency and Variable Power Case The first data collected

and plotted from this case was the iterations to converge versus the signal-to-jammer

ratio (SJR) of the input signal to the array. This is presented graphically in

Figure 14. To explain the figure we will start from the lowest SJiR to the highest.

The two leftmost data points at a SJR of approximately -56 dB to -50 dB are

indicative of the system adapting to the desired signal but in a manner that was

quite slow in comparison to the major body of the data. These data points show the
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typical pattern of an adaptive filter when the desired and undesired signals exceed

the dynamic range of the filter. In other words, an adaptive filter can only react

to signals within its dynamic range. If this is not the case, the signal strengths

become too widely separated and the performance suffers. The dynamic range of an

adaptive array is limited by two factors (4). The first limit is the circuitry itself. All

electronic equipment has a dynamic range dependent upon the components used.

This limit is not inherent to the adaptive filter itself, but to the components that are

used to implement it. The second limit is the dynamic range of the adaptive filter

algorithlm. An adaptive filter's weight adaption is based on the eigenvalues of the

input signal. When there is more than one signal present there will be eigenvalues

representing each of the signals. The weights then adapt to this combination of

eigenvalues. If both a strong and a weak signal are present, then the weights must

attempt to adapt to an average of the different eigenvalues. The speed of response

of the filter then becomes constrained. The adaptive filter cannot react to both

without a loss in system performance. The other point of interest in the figure is

that once the system reaches a point of normal operation (above ..46 dB) an area of

poor performance occurs around the SJRi, of 0 dB. This is due the array becoming

slightly confused as to which signal is the jammer. In most situations the jammer is

the signal with the most power at the input to the receiver.

The performance of the barrage jammer was consistent with that developed by

Gupta (8). The plot of SJRi, versus SJRo,,t given in Figure 15 compared favorably

with Gupta's data. As was already discussed one of the inherent limitations of the

LMS adaptive array is its relatively modeiate dynamic range. In this case dynamic

range was -56 dB before the signal was significantly degraded. It should be noted

that the poorest operating performance of the system occurred at a SJRin of from

-36 dB to -30 dB. Even though the performance is still within the detectable range of

most receivers, it represents the local minima of the operating region. This decline

in SJR,,,t was also noted by Gupta. His data revealed that it occurred at -20
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dB. The difference is within acceptable limits given that the exact conditions of his

experimentation are not known. The exact point of this depression is determined by

the bandwidth of the noise source. The wider the bandwidth, the lower will be the

point of its occurrence. The plot of data that is given is of the same general shape

as that obtained by Gupta. The SJRo,,t is relatively flat over the operating range of

the filter. It varies from -1 dB to 4 dB. The experiment was concluded at an SJRn

of 4 dB. This is the point where the SJRi, was better than the SJRut. It would

be prudent at Zhis point in the systems operation to turn the adaptive array off

and receive directly. The system loss that the array inserts at a SJRi,, greater than

0 dB is caused by the filters dependence on the power of the desired signal model

(15). This is an inverse relationship, in that the larger the desired signal model, the

smaller the output signal power. This is due to the desired signal model undergoing

power inversion also.

The plot in Figure 14 shows that after the SJR, reaches -46 dB the iterations

to converge increase rapidly with any increase in jammer power. This reflects the

system being able to converge to an optimal solution but having to take more time

to do it. That is not reflected in the Figure 15 since the SJRut is a time average

power over the life of the simulation. It can be also noted that over the operating

range of the filter (SJR,, > -56 dB) another point of poor relative performance is

centered around 0 dB. At this point the filter has difficulty distinguishing between

the desired signal and the undesired. It is still able to perform the nulling of the

undesired signal but it takes more time to distinguish it when the power levels are

equal. This would imply that there are two power levels that would be desirable

from the jammers point of view. Either a very large setting in order to constrain

the array or match the signal power at the point of reception is desirable, from the

jammers point of view. The second option would be difficult to implement since it

could be ambiguous at what power output by the jammer would be equal to the

desired signal at the receiver.
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Figure 16. Barrage Jammer Center Frequency versus Number of Iterations to
Converge

5.1.2 Variable Frequency and Constant Power Case The first data that was

collected and plotted from this case was the iterations to converge versus the jam-

mer center frequency as a function of transmitter frequency. This is displayed in

Figure 17. As the center frequency of the j ammer approaches the transmitter center

frequency the performance of the system degrades. This is also shown in Figure 16,

the plot of the SJRout versus the jammer center frequency. This would make sense

if we consider that as the center frequency of the jammer approaches the carrier

frequency, more of the jammer power spectrum will be within the passband of the

LMS loop. As the center frequency is moved away, less and less power is left for the

system to deal with and it is more effective against the remaining power spectrum.

From these plots it would be reasonable to conclude that if only a five percent differ-

ence in center frequencies can be achieved, it results in marked system performance

improvement.
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From the data gathered in the constant power, variable frequency experiment,

any jammer frequency other than that centered on the transmitting frequency of the

signal you wish to receive is preferable, from the receivers point of view. A SJR.t

improvement of 2 dB is achieved by moving the center frequency just five percent
from the jammer center frequency. This makes sense considering that the jammers

output is band limited to ten percent of its center frequency. A shift of a few percent

of the center frequency removes a significant portion of the jammers power spectrum

from the receiver passband. It also appears that there is a slight advantage to moving

the frequency lower rather than higher. It is not known why the performance of the

lower frequencies was better than those of the higher at this time.

5.1.3 Summary of Wideband Experiments In general, we can conclude that

the LMS adaptive array was effective against the barrage or wideband jammer.

However, the wideband jammer presents a difficult challenge to the adaptive array.

Wideband noise signals have frequency components that have random amplitude and

phase at all points in its spectrum. When an adaptive array forms a null at a certain

frequency, the wideband jammer is still corrupting the desired signal at another

frequency in the receiver bandpass. To counteract this effect there are two general

techniques which can be used. The first is to add more antenna elements and their

coincident LMS loops. This allows for more degrees of freedom for the adaptive array.

If a particular jammer is being too effective, the system can place another null on the

existing one in order to combat this. This can be done over and over until the system

reaches the limit of its degrees of freedom, which is constrained to N - 1 nulls where

N is the number of antenna elements. The second technique calls for additional taps

to be added in series to the existing array (11). The single tap quadrature processing

scheme that was used in this experiment is frequency independent. If additional taps

are added the transfer function of the array then becomes frequency dependent. It

can therefore track the random energy of the wideband jammer through its passband

and create several nulls at various frequencies to counter the wide band effects of the
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Figure 18. Sweep Jammer SJRn versus Number of Iterations to Converge

barrage jammer. A three tap processor can readily handle a forty percent bandwidth

jammer in this manner (11).

5.2 Narrowband Experiments

To summarize the methodology presented in the preceling chapter, the nar-

rowband experiments are those that involve the use of the sweep jammer. There were

experiments performed with three parameters of iteration: jammer power, jammer

sweep rate and jammer AOA. They were performed in such a manner as to hold two

of the three variables constant while varying the other. This would allow conclusions

to be drawn as to the effect of each- parameter on system performance.

5.9.1 Constant Sweep Frequency and Variable Power Case The data that

was collected for this case in presented graphically in Figures 18 and 19. The

data was collected and presented in the same manner as in the wideband variable
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power case to facilitate comparison of the two jammers effectiveness. In Figure 18

the iterations to converge versus the input SJR is shown. The value of 50 was used

to represent the region were no convergence was achieved. This occurred when the

SJRj power level exceeded -65 dB. The remainder of the plot indicates a remarkably

consistent performance for all power levels encountered. The plot of SJRj. versus

SJROUt is shown in Figure 19. It shows a more graceful degradation of the SJROut

as the SJRi,, increases. The system output was demodulated through a envelope

detector. The demodulated output of the system was detectable at a SJRot of -20

dB. The SJRout can be this low with the sweep jammer due to its time varying

nature. Since the jammer is constantly changing the position of its spectrum, the

time that it is actually on position to jam is relatively small.

5.2.2 Variable Sweep Frequency and Constant Power Case The data col-

lected from this case is inconclusive as to the effect of sweep rate upon the adaptive

filter. As the sweep rate was gradually increased from ten to one hundred percent of

the modulation frequency there was no appreciable change in system performance.

It was at first interpreted as the ability of the adaptive array to track the sweep

jammer through its constant sweep. This is as yet not proven or disproven. Further

analysis of the spectrum of the sweep jammer was then conducted and another more

plausible explanation was formed. As the sweep rate of the j:mmer is increased, its

spectrum at each sampling time appears to overlap as in Figure 20. As this sweep

rate is further increased it takes on the appearances of the spectrum of a constant

amplitude tone jammer with its characteristic flat power spectrum over the frequency

range. This analysis then suggests that the adaptive array is indeed immune to the

effects of the sweep rate.

5.2.3 Conclusions on Narrowband Experiments The data gathered in the

narrowband experiments is presented in Figures 18 and 19. From these plots the

performance of the LMS adaptive array against a sweep jammer can be inferred.
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The plot of the iterations to converge versus SJR,,, shown in Figure 18, displays an

almost binary response to the jammer. Either the system worked well or not at all.

If the jammer power was increased so that the SJR,, was below -65 dB, the filter

would not converge. If the power was decreased then it would converge at essentially

the same rate for all power levels encountered. This implies a immunit' to the power

used in the sweep jammer as long as it is within the dynamic range of the filter. As is

readily seen from the plot that dynamic range is -65 dB. The data gathered from the

SJRi,, versus SJRot plot is a little more graceful in its degradation due to jammer

power increases. The SJRout was not so binary in its response. The SJR,,t did

flatten to a constant 2 dB above a SJRi, of -46 dB. As with the barrage jammer the

filter did have a system loss after the SJRr rose above 0 dB. This can be countered

in a like manner as the barrage jammer by turning the adaptive array off at this

point and directly receiving the signal.

5.3 Angle-of-Arrival Experiments

The angle-of-arrival (AOA) experiments for both the wide and narrow band

cases displayed no significant change in system performance as a function of the

AOA. There are three contributing factors to these results. The first factor is the

resolution of the antenna element model. The antenna element model was described

in detail in Chapter III, Implementation. The description noted that the AOA was

determined by the mathematical relationship given by Eq (28) that is a function of

the operating frequency, the sample time and the phase delay. At the low frequencies

that were used for these simulations the minimum AOA separation between two

signals is six degrees. The separation between the main beam of the array and an

adjacent null could be easily contained in this six degrees. Any further separation

would only slightly increase the depth of the null and its consequent performance.

The second factor is that the noise jammers and the modulated data are of a highly

uncorrelated nature. Since the received signals were highly uncorrelated with each
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other any additional phase shift between the noise jammer and the modulated data

signal would not add much more discrimination for the filter to use. The third factor

is that a quadrature hybrid receiving system was used. The quadrature hybrid single-

tap filter that was implemented in these experiments has a time-varying response

that is a funL.ion of p. The value of p adapts to the changing input signal strength.

When a signal arrives at a angle other than the boresight of the antenna, there is

a phase difference between each element of the antenna. Since each element and its

quadrature had its own independent adaptive filter and corresponding value of it,

this phase shift did not change the input signal autocorrelation or crosscorrelation

functions that the LMS depends on for its adaptation. Since no change was made

to the input correlation or crosscorrelation matrices there was no change in the

system performance. Therefore the experiment produced the results that were to

be expected for a system that produced the null separation and employed highly

uncorrelated input signals with quadrature processing. These results pertaining to

AOA experiments may not be applicable to other types of modulation types and

processing, and in fact for most systems, the AOA is a very important aspect of the

input signals.
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VI. Conclusions and Recommendations

This chapter will summarize the results presented in Chapter V and draw

conclusions based on those results. The conclusions will discuss the effectiveness of

the LMS adaptive array in the presence of the individual barrage and sweep jammers.

In addition, recommendations will be made concerning further areas of research that

may be undertaken in pursuit of this topic.

6.1 Conclusions

The LMS algorithm appeared to be effective against the barrage jammer. That

effectiveness could be improved if the complexity of the adaptive array were increased

by the addition of more LMS loops in either parallel or series. The arrays best perfor-

mance occurred at -10 dB, while its worst (within operating dynamic range) occurred

at -30 dB. These values are consistent with other research and are determined on

the curve by the bandwidth of the jammer. A jammer with a different bandwidth

will exhibit the same general curve shape with these minima and maxima occurring

at different values of SJRt,. The array can be confused by the appearance of signals

at the input with the same power levels and it will take longer to determine the

desired signal. The SJRut may be improved by a reduction in the power of the

desired signal model. There are trade-offs to be considered and limitations to this

improvement that are not addressed in this document. It is detrimental to have

the transmitting signal center frequency to be at the center frequency of the bar-

rage jammer. A difference of five percent results in at least a 3 dB improvement in

SJRout.

The performance of the LMS adaptive array against the sweep jammer was

also quite impressive. The system had an essentially constant response that was

independent of the SJRj,,, so long as that value was within the dynamic range of

the array. When the dynamic range was exceeded there was a sharp drop-off in
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performance. There was no convergence within the length of the simulation in this

area but the SJR,, did appear to degrade more gracefully. The array exhibited an

immunity to the sweep rate of the jammer.

6.2 Recommendations

The primary goal of this thesis effort was to document the effectiveness of the

LMS algorithm in an adaptive array against jammers that are typically encountered

in a combat environment. The research that is contained in this document is far

from complete in its treatment of the problem of interference suppression. There are

other areas that are in need of further exploration and this section will document

some of those general directions that may be undertaken in other research efforts.

In addition the use of BOSS as a simulation environment will be discussed.

6.2.1 Recommendations for Further Research The first recommendation con-

cerns the types of signals used and various combinations of them. The performance

of the LMS adaptive array is directly proportional to the correlation between the

interference and the desired signal. It therefore becomes necessary to document the

performance of the array using various forms of modulation (i.e. NBFM, WBFM,

FSK, QPSK, etc) against the known jammer types. There are also spread spectrum

techniques that may impose some constraints on the usage of adaptive arrays that

are not obvious. It would also be interesting to determine the effects a combination

of jammers might have. Do three jammers with a given output power of X dB have

the same effect as a single jammer with the same output power? The jammers that

were used were by far the most common but there exist a myriad of more exotic and

modern methods for signal interference that require evaluation.

The second recommendation concerns the antenna array elements. The use of

ideal omnidirectional antenna elements is useful in isolation of the performance of

a particular portion of a receiver system, such as the adaptive array. In a situation
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where it is required to simulate the performance of an adaptive array with a particular

geometry and element pattern, a more complex simulation is needed. A method for

inputting that array geometry and pattern is required. This is quite feasible using

the BOSS environment of parameter input. These first two recommendations were

also recommended by Srubar (10) and are expounded on here.

The third recommendation concerns the adaptive array techniques to suppress

wide band or multiple jammers. The use of N antenna elements to create N-1 nulls

was discussed as a method to combat this particular threat. It has also been proposed

that an array with several taps on each element would be effective against wide band

or multiple threats (8). A effort to quantitatively document that effectiveness would

be of interest.

The fourth recommendation concerns the optimization of the desired signal

model. This may be the most interesting topic that is recommended and little is

published concerning the modeling techniques and how to optimize them. There

are two major types of information (digital and analog or voice) used with countless

modulation types. The question is, how do you know what model optimizes your

signal out of the adaptive array? It is desired that the signal model be highly

correlated with the desired signal while uncorrelated with the interference. What is

the trade-off between the two? Is it more desirous to be more correlated with the

desired signal at the expense of being less uncorrelated with the interference?

The final recommendation that is made concerns the implementation of an

adaptive beamformer using a neural network. The LMS algorithm developed by

Widrow et al is a very simple form of neural network using a very simple learning

method. A different and perhaps more complex neural network might be able to bet-

ter adapt to complex and hostile electromagnetic environment than the LMS could.

There is considerable research being done in this area and background material is

readily available.
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6.2.2 BOSS as a Simulation Environment The use of BOSS as a simulation

environment for adaptive arrays proved successful. BOSS provided all of the prim-

itive modules that were necessary for the construction of all the desired but more

complex modules. The graphics interface to it was very helpful in easing the con-

struction of these modules. These findings concur with those stated by Srubar (10)

in his research. The only limits encountered were were with the BOSS environment

interacting with the computer it was hosted on. The system that BOSS resides on

had limited disk storage space and BOSS can easily consume vast quantities of disk

storage while executing a simulation. This proved to be a hinderence in running

simulations with normal RF frequcncies and the sampling that they require. If more

disk storage were available the system can produce realistic simulations of RF sys-

tems in operation. The use of BOSS is recommended for use in further research in

this area.
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